Quasi-isometry invariants of weakly special square complexes

نویسندگان

چکیده

We define the intersection complex for universal cover of a compact weakly special square and show that it is quasi-isometry invariant. By using this invariant, we study quasi-isometric classification 2-dimensional right-angled Artin groups planar graph 2-braid groups. Our results two well-known cases groups: (1) those whose defining graphs are trees (2) outer automorphism finite. Finally, there infinitely many which to not.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homological Invariants and Quasi - Isometry

Building upon work of Y. Shalom we give a homological-algebra flavored definition of an induction map in group homology associated to a topological coupling. As an application we obtain that the cohomological dimension cdR over a commutative ring R satisfies the inequality cdR(Λ) ≤ cdR(Γ) if Λ embeds uniformly into Γ and cdR(Λ) < ∞ holds. Another consequence of our results is that the Hirsch ra...

متن کامل

Quasi-isometry Invariance of Novikov-shubin Invariants for Amenable Groups

We use the notion of uniform measure equivalence to prove that the Novikov-Shubin invariants resp. the capacities of amenable groups are invariant under quasi-isometry. Further, we comment on the connection to Gaboriau’s theorem on the invariance of L-Betti numbers under orbit equivalence.

متن کامل

Quasi-isometry rigidity of groups

2 Rigidity of non-uniform rank one lattices 6 2.1 Theorems of Richard Schwartz . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Finite volume real hyperbolic manifolds . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Proof of Theorem 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4 Proof of Theorem 2.1 . . . . . . . . . . . . . . . . . . . . . . . . ...

متن کامل

Isometry Groups of Cat(0) Cube Complexes

Given a CAT(0) cube complex X, we show that if Aut(X) 6= Isom(X) then there exists a full subcomplex of X which decomposes as a product with R. As applications, we prove that ifX is δ-hyperbolic, cocompact and 1-ended, then Aut(X) = Isom(X) unless X is quasi-isometric to H, and extend the rank-rigidity result of Caprace–Sageev to any lattice Γ ≤ Isom(X).

متن کامل

Quasi-invariants of dihedral systems

A basis of quasi-invariant module over invariants is explicitly constructed for the two-dimensional Coxeter systems with arbitrary multiplicities. It is proved that this basis consists of m-harmonic polynomials, thus the earlier results of Veselov and the author for the case of constant multiplicity are generalized.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 2022

ISSN: ['1879-3207', '0166-8641']

DOI: https://doi.org/10.1016/j.topol.2021.107945